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Abstract. This paper presents a perfect duality theory and a complete set of solutions to nonconvex
quadratic programming problems subjected to inequality constraints. By use of the canonical dual
transformation developed recently, a canonical dual problem is formulated, which is perfectly dual
to the primal problem in the sense that they have the same set of KKT points. It is proved that the
KKT points depend on the index of the Hessian matrix of the total cost function. The global and local
extrema of the nonconvex quadratic function can be identified by the triality theory [11]. Results
show that if the global extrema of the nonconvex quadratic function are located on the boundary of
the primal feasible space, the dual solutions should be interior points of the dual feasible set, which
can be solved by deterministic methods. Certain nonconvex quadratic programming problems in
�n can be converted into a dual problem with only one variable. It turns out that a complete set of
solutions for quadratic programming over a sphere is obtained as a by-product. Several examples
are illustrated.
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1. Primal Problems and Motivation

The primary goal of this paper is to study the complete set of solutions to
the following standard quadratic programming problem (primal problem ��� in
short).

���� min
x∈�n

P�x�= 1
2
xTAx−fTx� (1)

s	t	 Bx�b� (2)

where A=AT ∈�n×n and B∈�m×n are given two matrices, f ∈�n and b∈�m are
two vectors.
The quadratic programming problem ��� appears in many applications. In the

case that the matrix A is not symmetric, it can be converted to symmetric form
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by replacing A by 1
2�A+AT�. Also, if the problem has any other additional linear

constraints, such as x�0∈�n, we can always replace B and b by certain extended
matrix �B and vector b̄, respectively, such that both constraints Bx�b and x�0
can be written in a unified form �Bx� b̄. Thus the primal problem ��� can be
considered as the general quadratic programming problem. The primal feasible
space

�f =x∈�n �Bx�b� (3)

is a convex subset of�n. The problem ��� has at least one solution if the radius r0
of �f , defined by �x��r0 ∀x∈�f , is finite.
Introducing the Lagrange multiplier �∈�m to relax the inequality constraint

Bx�b, the classical Lagrange function for ��� is given by

L�x���= 1
2
xTAx−fTx+�T �Bx−b�	 (4)

Thus the first order Karush-Kuhn-Tucker (KKT) optimality conditions for ���
can be written as follows

Ax+BT�= f� (5)

Bx−b�0� ��0� (6)

�T �Bx−b�=0	 (7)

Equation (7) is also referred as the complementarity condition, which is usually
written in the form of �T ⊥�Bx−b�, i.e. the Lagrange multiplier �∈�m should be
perpendicular to the constraint vector �Bx−b�∈�m. Any point x̄ which satisfies
(5)–(7) is called a KKT stationary point of ���. It is known that the KKT
conditions are only necessary for the quadratic programming problem ���, i.e.
if x̄ is an optimal solution of ���, then x̄ must be a KKT point. If the matrix A
is positive semi-definite, or positive definite, then ��� is a convex programming
problem. In this case, a KKT point x̄ is also sufficient for problem ���, which
can be solved easily by any of polynomial algorithms. However, when A is not
positive semi-definite, the cost function P�x� is nonconvex, and it might possess
many local minimizers. In this case, ��� becomes a nonconvex problem, and the
application of traditional local optimization procedures for this problem can not
guarantee the identification of the global minima (see Floudas and Visweswaran,
1995).
Nonconvex quadratic programming problem has great importance both from

the mathematical and application viewpoints. Sahni (1974) first showed that for
a negative definite matrix A, the problem ��� is NP-hard. This result was also
proved by Vavasis (1990, 1991) and by Pardalos (1991). During the last decade,
several authors have shown that the general quadratic programming problem ���
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is an NP-hard problem in global optimization (cf. Murty and Kabadi, 1987; Horst
et al., 2000). It was shown by Pardalos and Vavasis (1990) that even when the
matrix A is of rank one with exactly one negative eigenvalue, the problem is
NP-hard. In order to solve this difficult problem, many efforts have been made
during the last decade. A comprehensive survey has been given by Floudas and
Visweswaran (1995).
Duality is a fundamental concept that plays a central role in almost all

natural science. In convex systems, the mathematical theory of duality has
been well studied. In the primal problem ���, if A is positive definite, the classi-
cal Lagrangian L�x��� defined by (4) is a saddle function, and the dual function
can be defined as

P∗���=min
x∈�n

L�x���	

By the well-known saddle min-max theory, the following duality relation

min P�x�=min
x
max
�

L�x���=max
�
min
x

L�x���=max
�

P∗���

holds on certain feasible spaces of x and �. Based on this classical saddle-
Lagrangian duality, the so-called primal-dual interior-point method has been
considered as a revolutionary technic in convex programming during the last
fifteen years (cf. Wright, 1998). However, if the matrix A is indefinite, the
classical Lagrangian L�x��� is no longer a saddle function. Although in this case,
the Fenchel-Rockefeller dual function can still be defined as

P∗���= inf
x∈�n

L�x���=−P��−BT��−bT ��

where

P��x∗�= sup
x∈�n

xTx∗−P�x��

is the Fenchel sup-conjugate transformation, the Fenchel-Young inequality leads
to a broken duality relation:

infP�x��supP∗���	

The no zero �= infP�x�−supP∗���>0 is called duality gap. Very often �=�
in concave minimization where A is negative definite. This duality gap shows that
the traditional Lagrange duality theory can be used mainly for convex problems.
In dynamical systems, it is known that the so-called chaotic phenomena is mainly
due to the nonconvexity of the total potential of the system (see [12]).
In order to recover the duality gap, many efforts have been made during the last

decade in global optimization, and some important results have been achieved
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(see, for example, Penot and Volle, 1990; Thach et al., 1993–96; Tuy, 1991, 1995;
Rubinov et al., 2001; Gasimov, 2002; Goh and Yang; 2002, Rubinov and
Gasimov, 2003, and much more). These results are based on the augmented
Lagrangian theory and penalty function methods, a so-called nonlinear Lagrange
theory has been developed very recently for solving nonconvex constrained opti-
mization problems, where the zero duality gap property is equivalent to the lower
semi-continuity of a perturbation function (see Rubinov and Yang, 2003). How-
ever, how to use the traditional Legendre transformation to formulate perfect dual
action has been listed as one of two open problems in the very recent paper by
Ivar Ekeland (2003).
Actually, this open problem has been solved very recently by the canoni-

cal dual transformation method developed by the author in general nonconvex
systems (Gao, 2003). The key idea of this method is to choose a certain (geo-
metrically reasonable) operator y=��x�� �n→�m such that a given nonconvex
function P�x� can be written in the canonical form P�x�=��x���x��, where
��x�y�� �n×�m→� is a canonical function in each of its variables (see [13]).
By the definition introduced in [11], a real-valued function �W�y�� �m→� is said
to be a canonical function on �m if the duality relation y∗=D�W�y� is invertible
for all y∈�m. Thus, the Legendre conjugate of a canonical function W�y� can
be uniquely defined by

�W ∗�y∗�=yTy∗− �W�y� �y∗=D�W�y��	

In the case that the canonical function � can be written in the form of ��x�y�=
�W�y�−�F�x�, where both �W��m→� and �F ��n→� are canonical functions, the
extended Lagrangian, i.e. the so-called total complementary energy in nonconvex
mechanics (See Gao and Strang, 1989a, b)

��x�y∗�=���x��Ty∗− �W ∗�y∗�−�F�x� (8)

is well defined on �n×�m. Then by use of the so-called �-canonical dual
transformation (see [11])

�F��y∗�=���x��Ty∗−�F�x���T
t �x�y

∗−D�F�x�=0� x∈�n�� (9)

where �t�x�=D��x� is the Gâteaux derivative of ��x�, the canonical dual
function of the nonconvex P�x� can be well defined by

Pd�y∗�=�F��y∗�− �W ∗�y∗�	 (10)

It was proved in [11] that if �x̄�ȳ∗� is a critical point of �, then the following
duality condition holds

P�x̄�=Pd�ȳ∗�	
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The canonical dual transformation was originally studied by Gao and Strang in
nonsmooth/nonconvex mechanics (1989), where ��y� is a quadratic partial dif-
ferential operator, �W�y� is convex and �F�x� is a linear functional. The one-to-one
duality relation y∗=D�W�y� is called the canonical constitutive law. For example,
in finite deformation theory and two-phase transitions, the total potential of the
systems usually takes the form of P�x�=W�x�−fTx, whereW�x�= 1

2

(
1
2 �x�2−�

)2
is the well-known van de Waal double well function, �>0 is a given parameter.
Since the relation x∗=DW�x� is not one-to-one, the Legendre conjugate W ∗�x∗�
of the nonconvexW is not uniquely defined (cf. Sewell, 1987). However, in terms
of the quadratic operator y=��x�= 1

2 �x�2, the function �W�y�= 1
2�y−��2 is a

canonical (quadratic) function of y, and �W���x��=W�x�. Since y∗=D�W�y�=
y−� is one-to-one, the Legendre conjugate of �W�y� can be uniquely obtained as

�W ∗�y∗�=yTy∗− �W�y� �y∗=D�W�y�=y−��= 1
2
y∗2+�y∗	 (11)

It was shown in [8, 12] that by use of this canonical dual transformation, a class
of nonconvex boundary value problems can be converted into a dual algebraic
system, therefore, complete set of solutions have been obtained.
Generally speaking, most of physical variables appear in dual pairs. This

one-to-one canonical duality relation serves as a foundation for the canonical
dual transformation method. Extensive applications of this general method have
been given in [11], and an interesting triality theory in nonconvex systems was
discovered in post-buckling analysis of a nonlinear beam model, where the total
potential P�x� is a nonconvex functional in infinite dimensional space (see [7]).
Very recently, this canonical dual transformation method and the triality the-
ory have been generated to solve a class of global optimization problems, where
�F�x�=−P�x�= fTx− 1

2x
TAx and �W���x�� is a canonical function of y=��x�

(see [16]).
The goal of this paper is to present particular application of the general results

given in [16] to the nonconvex quadratic problem ���. In the next section, a
parametric optimization problem is proposed, which can be considered as a trust
region method. By the canonical dual transformation, a perfect dual problem is
formulated, which is equivalent to the primal problem in the sense that they have
same set of KKT points. The global minima theorem is presented in Section 3. In
Section 4 we will show that the canonical dual transformation is naturally linked
to the quadratic programming over a sphere. The canonical dual problem can
be solved completely, and a complete set of KKT points are obtained. Several
examples are illustrated in the last section.

2. Parametrization and Canonical Dual Problem

In order to use the canonical dual transformation to solve the nonconvex quadratic
programming problem ���, an additional normality constraint �x�2�2� is intro-
duced, where �>0 is a given parameter. Actually, this normality condition is



382 D.Y. GAO

indeed a constraint for many real applications (see [8], and Powell, 2002). By use
of this constraint, a parametric optimization problem can be proposed as the
following

����� min
x∈�n

P�x�= 1
2
xTAx−fTx� (12)

s	t	 Bx�b� �x�2�2�	 (13)

Since for a given �>0, the feasible space

��=
{
x∈�n �Bx�b�

1
2
�x�2��

}
(14)

is a closed convex subset of �n, the parametric optimization problem ���� has
at least one global minimizer x̄�. If ���0= 1

2r
2
0 , the radius of the feasible space

�f , then x̄� solves also the original problem ���. In this section, we will find the
canonical dual formulation of the parametric problem ����.
Following the standard procedure of the canonical dual transformation devel-

oped in [11], the canonical geometrical operator �� �n→�m×� in the primal
problem ���� can be defined as a vector-valued mapping:

y=��x�=
(
Bx�

1
2
�x�2

)
=������ �n→�m×��

where �=Bx is an m-vector, and �= 1
2 �x�2 is a scale. Let �a be a convex subset

of �=�m×� defined by

�a=y=�����∈�m×����b� ����	

Its indicator �W� �→�∪+��, defined by

�W�y�=
{
0 if y∈�a�

+� otherwise�

is convex, lower semi-continuous on � . Thus, the inequality constraints in ����
can be relaxed by the indicator of �a and the parametric primal problem ����
takes the unconstrained canonical form

����� min
x∈�n

{
�W���x��+ 1

2
xTAx−xT f

}
	 (15)

By the fact that �W�y� is convex, lower semi-continuous on � , the canonical dual
variable y∗ ∈�∗=�=�m×� is defined by the sub-differential inclusion:

y∗ ∈"− �W�y�=
{
��∗��∗� if �∗�0∈�m� �∗�0�
∅ otherwise	
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The canonical conjugate �W� of �W can be obtained by the sup-Fenchel
transformation:

�W��y∗�=sup
y∈�

yTy∗− �W�y��=sup
��b
sup
���

�T �∗+��∗�

=
{
bT �∗+��∗ if �∗�0� �∗�0�
+� otherwise	

(16)

Its effective domain is a positive cone in �m×�, defined by

�∗
a =dom �W��y∗�=��∗��∗�∈�m×���∗�0∈�m��∗

�0∈��	
Since the sup-duality relations

y∗ ∈"− �W�y� ⇔ y∈"− �W��y∗� ⇔ �W�y�+ �W��y∗�=yTy∗ (17)

hold on �×�∗, the duality pair �y�y∗� is called the extended canonical dual pair
on �×�∗ (see [11]), and the functions �W�y� and �W��y∗� are called canonical
functions (see [11]). Particularly, on �a×�∗

a , the sup-duality relations (17) are
equivalent to the following KKT conditions:

�a�y ⊥ y∗ ∈�∗
a 	

For a given y∗=��∗��∗�∈�m×� such that A+�∗I is invertible, then the
�-canonical conjugate �F��y∗� of the canonical function �F�x�=−P�x� can be
well defined by the �-canonical dual transformation (cf. [11])

�F��y∗�=��x�Ty∗−�F�x��D�F�x�=�T
t �x�y

∗� x∈�a�

=−1
2
�f−BT�∗�T �A+�∗I�−1�f−BT�∗�	

On the dual feasible space defined by

�∗
�=��∗��∗�∈�∗

a �det�A+�∗I� �=0�
=��∗��∗�∈�m×� ��∗�0��∗

�0�det�A+�∗I� �=0��
the canonical dual function Pd�y∗�=�F��y∗�− �W��y∗� takes the following form

Pd��∗��∗�=−1
2
�f−BT�∗�T �A+�∗I�−1�f−BT�∗�−��∗−bT �∗	 (18)

Thus, the canonical dual problem (��d
�� in short) associated with the parametric

problem ���� can be eventually formulated as the following (See Gao, 2003)

��d
��� ext Pd��∗��∗� (19)

s	t	 �∗�0� �∗
�0� det�A+�∗I� �=0� (20)

where ext P�x� stands for finding all the extremum values of P�x�.
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THEOREM 1 (Perfect duality theorem). Problem ��d
�� is canonically (perfectly)

dual to the primal parametric optimization problem ���� in the sense that if
ȳ∗=��̄∗��̄∗�∈�∗

� is a KKT point of ��d
��, then the vector defined by

x̄=�A+�̄∗I�−1�f−BT �̄∗� (21)

is a KKT point of ����, and

P�x̄�=Pd�ȳ∗�	 (22)

S. uppose that ȳ∗=��̄∗��̄∗�∈�∗
� is a KKT point of ��

d
��, then we have

0� �̄∗ ⊥ 1
2
�f−BT �̄∗�T �A+�̄∗I�−2�f−BT �̄∗�−��0� (23)

0� �̄∗ ⊥ B�A+�̄∗I�−1�f−BT �̄∗�−b�0	 (24)

In terms of x̄=�A+�̄∗I�−1�f−BT �̄∗�, we have

0� �̄∗ ⊥ 1
2
x̄T x̄−��0� (25)

0� �̄∗ ⊥ Bx̄−b�0	 (26)

This shows that x̄=�A+�̄∗I�−1�f−BT �̄∗� is a KKT point of the parametric
problem ����. By the complementarity conditions (25) and (26), we have �̄

∗�=
1
2 �̄

∗x̄T x̄ and bT �̄∗=�Bx̄�T �̄∗. Thus, in terms of x̄=�A+�̄∗I�−1�f−BT �̄∗�, we have

Pd�ȳ∗�=−1
2
x̄T �A+�̄∗I�x̄− 1

2
�̄∗x̄T x̄−�Bx̄�T �̄∗= 1

2
x̄TAx̄− x̄T f=P�x̄��

which shows that there is no duality gap between the problems ���� and ��
d
��.

This proves the theorem. �

Theorem 1 shows that the primal problem ���� is equivalent to the canonical
dual problem ��d

�� in the sense that they have the same set of KKT points. It is
well known that the KKT conditions are only necessary for nonconvex quadratic
programming. The next section will present extremality conditions for the KKT
points.

3. Triality Theory for Local and Global Extrema

The quadratic programming problem ��� is nonconvex if A has at least one
negative eigenvalue. In order to clarify the extremality condition of the KKT
points, we need the following definition.

DEFINITION 1 (Index of the matrix A). Let A∈�n×n be a symmetric matrix.
The index id of A is defined to be the total number of distinct negative eigenvalues
of A.
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By this definition, the quadratic function P�x� is nonconvex if and only if
the index id >0. Suppose that the vector ��̄

∗
i ��̄

∗
i � is a KKT point of ��d

��,
and the matrix A with index id has p�n distinct eigenvalues ai�� i=1�			�p�n
in the order of

a1<a2< ···<aid <0�aid+1< ···<ap	

Then, if �̄∗
i >−a1, thematrix �A+�̄∗

i I� is positive definite. However, if aid+1=···=
ap=0 and the KKT point �̄∗

i <−aid , the matrix �A+�̄∗
i I�will be negative definite.

Let

�∗
�+=��∗��∗�∈�∗

� ��A+�∗I� is positive definite�� (27)

�∗
�−=��∗��∗�∈�∗

� ��A+�∗I� is negative definite�� (28)

�∗
�i=��∗��∗�∈�∗

�− ��∗>0��� (29)

and

��s=
{
x∈��

∣∣∣∣ 12 �x�2=�

}
	 (30)

Based on the triality theory developed in [11] as well as the recent result (see
Gao, 2003), we have the following interest result.

THEOREM 2 (Local and global extrema). Suppose that the matrix A has no zero
index id >0, and for a given parameter �>0, the vector ��̄∗i ��̄

∗
i � is a KKT point

of the duals problem ��d
��, and let x̄i=�A+�̄∗

i I�
−1�f−BT �̄∗i �.

If �̄∗
i >−a1, then the vector ��̄∗i ��̄

∗
i � is a maximizer of Pd on �∗

�+ if and only if
the vector x̄i is a minimizer of P on ��s, and

P�x̄i�= min
x∈��s

P�x�= max
��∗��∗�∈�∗

�+
Pd��∗��∗�=Pd��̄∗i ��̄

∗
i �	 (31)

If 0� �̄∗
i <−aid , then ��̄∗i ��̄

∗
i � is a maximizer of Pd on �∗

�− if and only if x̄i is
a global maximizer of P on ��, and

P�x̄i�=max
x���

P�x�= max
��∗��∗�∈�∗

�−
Pd��∗��∗�=Pd��̄∗i ��̄

∗
i �	 (32)

If 0<�̄∗
i <−aid , the KKT point ��̄∗i ��̄

∗
i � is a minimizer of Pd on the open set

�∗
�i if and only if x̄i is a minimizer of P on the set ��s, and

P�x̄i�= min
x∈��s

P�x�= min
��∗��∗�∈�∗

�i

Pd��∗��∗�=Pd��̄∗i ��̄
∗
i �	 (33)
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Proof. By Theorem 1, and the triality theory developed in [11] we know that
the vector ȳ∗i =��̄∗i ��̄

∗
i �∈�∗

� is a KKT point of the problem ��d
�� is and only if

x̄i=�A+�̄∗
i I�

−1�f−BT �̄∗i � is a KKT point of the problem ����, and

P�x̄i�=��x̄i��̄
∗
i ��̄

∗
i �=Pd��̄∗i ��̄

∗
i �� (34)

where the extended Lagrangian ��x��∗��∗� is the total complementary function
associated with problem ���� (see [11]), defined by

��x��∗��∗�= 1
2
xT �A+�∗I�x− �W���∗��∗�+�Bx�T �∗−xT f 	 (35)

Particularly, if �̄∗
i >−a1, the matrix �A+�∗

i I� is positive definite, the canonical
dual function Pd��∗��∗� is concave in each of its components �∗ and �∗, respec-
tively. In this case, the extended Lagrangian � is convex in x∈�n and concave
in each �∗ ∈�m and �∗ ∈� (� is concave in each �∗ and �∗ does note imply that
� is concave in the vector ��∗��∗�, see Remark 2.6.1 in [11], p. 82). Thus, we
have

Pd��̄∗i ��̄
∗
i �= max

��∗��∗�∈�∗
�+
Pd��∗��∗�

= max
�∗>−a1

max
�∗�0

min
x∈�n

��x��∗��∗�

= max
�∗>−a1

min
x∈�n

max
�∗�0

{
1
2
xT �A+�∗I�x+�Bx−b�T �∗−��∗−xT f

}

= max
�∗>−a1

min
x∈�n

{
1
2
xT �A+�∗I�x−��∗−xT f

}
s	t	 Bx�b

=min
x∈�f

{
P�x�+ max

�∗>−a1
�∗
(
1
2
xTx−�

)}

=min
x∈�f

P�x� s	t	
1
2
xTx=��

since the linear programming

�1= max
�∗>−a1

�∗
(
1
2
xTx−�

)

has a solution in the open domain �−a1�+�� if and only if 12x
Tx−�=0. By the

fact that if id >0, then �̄
∗
i >−a1>0, the KKT condition (25) leads to 1

2 �x̄i�2=�
also. From Theorem 1 we have (31).
On the other hand, if �̄∗

i ∈ *0�−aid�, i.e. 0� �̄∗
i <−aid , and the matrix A+�̄∗

i I
is negative definite. In this case, the extended Lagrangian ��x��∗��∗� is concave
in x∈�n and concave in both �∗ ∈�m

+ and �∗ ∈ *0�−aid�. Thus, if ��̄∗i ��̄∗
i � is a
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global maximizer of Pd on �∗
�−, then by the so-called super-Lagrange duality

theory developed in [11] and the triality lemma in Section 6, we have

Pd��̄∗i ��̄
∗
i �= max

��∗��∗�∈�∗
�−
Pd��∗��∗�

= max
�∗∈*0�−aid �

max
�∗�0

max
x∈�n

��x��∗��∗�

= max
�∗∈*0�−aid �

max
x∈�n

max
�∗�0

{
1
2
xT �A+�∗I�x+�Bx−b�T �∗−��∗−xT f

}

= max
�∗∈*0�−aid �

max
x∈�n

{
1
2
xT �A+�∗I�x−��∗−xT f

}
s	t	 Bx�b

=max
x∈�f

{
P�x�+ max

�∗∈*0�−aid �
�∗
(
1
2
xTx−�

)}

=max
x∈�f

P�x� s	t	
1
2
xTx���

by the fact that the domain *0�−aid� is closed on the lower bound and open on
the upper bound, the problem

�2= max
�∗∈*0�−aid �

{
�∗
(
1
2
xTx−�

)}
(36)

has a solution if and only if 1
2x

Tx��, and for this solution, �2=0. Thus, by
Theorem 1 and the equality (34) we have (32).
Finally, if 0<�̄∗

i <−aid , and ��̄∗i ��̄∗
i � is a global minimizer of P

d on �∗
�i, then

the super-Lagrange duality theory and the triality lemma lead to

Pd��̄∗i ��̄
∗
i �= min

��∗��∗�∈�∗
�i

Pd��∗��∗�

=min
�∗�0

min
�∗∈�0�−aid �

max
x∈�n

��x��∗��∗�

= min
�∗∈�0�−aid �

min
x∈�n

max
�∗�0

��x��∗��∗�

= min
�∗∈�0�−aid �

min
x∈�n

{
1
2
xT �A+�∗I�x−��∗−xT f

}
s	t	 Bx�b

=min
x∈�n

{
P�x�+ min

�∗∈�0�−aid �
�∗
(
1
2
xTx−�

)}
s	t	 Bx�b

=min
x∈�n

P�x� s	t	 Bx�b�
1
2
�x�2=��
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since the linear minimization

�3= min
�∗∈�0�−aid �

�∗
(
1
2
xTx−�

)

has solution on the open domain �0�−aid� if and only 1
2x

Tx−�=0. By the fact
that Pd��̄∗i ��̄

∗
i �=P�x̄i� for all KKT points of ����, the theorem is proved. �

Remark 1. Theorem 2 and its proof show an important fact that if the extrema x̄i
of the primal problem ���� are on the nonconvex set ��s, i.e. the boundary of
the sphere �x�2=2�, then the associated KKT points �̄∗

i should be interior points
of the dual feasible set, and vice versa. This fact is due to the canonical duality
and the complementarity condition. In this case, the minimizers x̄i are usually
not critical points of P. This is one of main reasons why the primal problem is
NP-hard. However, for each given �∗ ∈�m, the dual solutions �̄∗

i >0 are critical
points of the canonical dual function Pd controlled by the dual algebraic equation

1
2
�f−BT �̄∗�T �A+�̄∗

i I�
−2�f−BT �̄∗�=�� (37)

which can be solved completely by MATHEMATICA. For a given sufficiently
large parameter �, this nonlinear algebraic equation has a unique root �̄∗>−a1,
which maximizes Pd on the open domain �−a1���. However, on the open domain
�0�−aid�, the dual algebraic equation (37) has at most two roots �̄∗

id
� �̄2id+1. By

Theorem 3 in the next section we know that �̄∗
2id
is a local minimizer of Pd, while

�̄∗
2id+1 is a local maximizer. Since there is no duality gap between the primal
and the dual problems, for a given sufficiently large �>0, the triality theory
(Theorem 2) can be used to find minimizers of P�x� on the nonconvex set ��s. If
the feasible set �f is bounded, then we can choose �=�0. In this case, ��=�f ,
and the vector

x̄i=�A+�̄∗
i I�

−1�f−BT �̄∗i �

is also a minimizer to the original problem ���. But this minimizer may be not
a global minimizer of P�x� on the whole feasible set �f since the canonical
dual problem ��d

�� may have some other KKT points �̄
∗
i located between each

open interval �−aj+1�−aj��j= i�			�id−1. (see Theorem 3). If the feasible set
�f is unbounded, the global minimizer of the problem ��� may even not exist.
Physically speaking, the primal problem ��� might be not well-proposed (see
page 180, [11]). In this case, the parametrization ���� can be used be find certain
useful global minimizers within the sphere 1

2 �x�2��.
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4. Quadratic Programming Over a Sphere

As a particularly important application of the canonical dual transformation and
the parametrization method, let us consider the following quadratic programming
with only a quadratic constraint over a sphere:

��q� min
1
2
xTAx−fTx

s	t	
1
2
xTx��	 (38)

This problem often comes up as a subproblem in general optimization algo-
rithms (cf. Powell, 2002). Often, in the model trust region methods, the objective
function in nonlinear programming is approximated locally by a quadratic func-
tion. In such cases, the approximation is restricted to a small region around the
current iterate. If the 2-norm is used to define this region, then these methods
ended up with the quadratic programming over a sphere ��q�.
As indicated by Floudas and Visweswaran (1995), due to the presence of the

nonlinear sphere constraint, the solution of ��q� is likely to be irrational, which
implies that it is not possible to exactly compute the solution. Therefore, many
polynomial time algorithms have been suggested to compute the approximate
solution to this problem (see, Sorensen, 1982; Karmarkar, 1990; and Ye, 1992).
However, by the canonical dual transformation, this problem can be solved com-
pletely. Since there is no linear inequality constraint Bx�b, the canonical dual
problem ��d

�� in this case is simply a concave maximization in �:

��d
q �� ext Pd��∗�=−1

2
fT �A+�∗I�−1f−��∗� (39)

s	t	 �∗
�0� det�A+�∗I� �=0	 (40)

This is a concave maximization with only one degree-of-freedom. The following
theorem presents a complete set of solutions for this dual problem.

THEOREM 3 (Complete solution to ��q�). Suppose that the symmetric matrix
A has p�n distinct eigenvalues, and id�p of them are negative such that

a1<a2< ···<aid <0�aid+1< ···<ap	

Then for a given vector f ∈�n, and a sufficiently large parameter �>0, the
canonical dual problem ��d

p � has at most 2id+1 KKT points �̄∗
i �i=1�			�2id+1

satisfying the following distribution law

�̄∗
1>−a1>�̄∗

2� �̄∗
3>−a2> ···>−aid >�̄∗

2id
� �̄∗

2id+1>0	 (41)
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For each �̄∗
i �i=1�			�2id+1, the vector defined by

x̄i=�A+�̄∗
i I�

−1f (42)

is a KKT spoint of the problem ��q� and

P�x̄i�=Pd��̄∗
i �� i=1�2�			�2id+1	 (43)

Moreover, if id >0, then the problem ��d� has at most 2id+1 KKT points on
the boundary of the sphere, i.e.

1
2
�x̄i�2=�� i=1�			�2id+1� (44)

and x̄1 is a global minimizer of the problem ��q�.
Proof. For a given f ∈�n and �>0, the scalar �̄∗ is a KKT point of the dual

problem ��d
q � if and only if

0� �̄∗ ⊥ 1
2
fT �A+�∗I�−2f−��0	 (45)

In term of x̄=�A+�∗I�−1f , (45) can be written as

0� �̄∗ ⊥ 1
2
x̄T x̄−��0	

This is the KKT condition for ��q�. Thus for each KKT point �̄
∗ of ��d

q �, the
vector x̄=�A+�∗I�−1f is a KKT point of the primal problem ��q�.
Since A=AT , there exists an orthogonal matrix RT =R−1 such that A=RTDR,

where D=�ai.ij� is a diagonal matrix. For the given vector f ∈�n, let g=Rf=
�gi� and

0��∗�= 1
2
fT �A+�∗I�−2f= 1

2

p∑
i=1

g2i �ai+�∗�−2	 (46)

Clearly, this real valued function 0��∗� is strictly convex within each interval
−ai+1<�∗<−ai, as well as the intervals −�<�∗<−ap and −a1<�∗<� (see
Figure 1).
Thus, for a given sufficiently large parameter �>0, the algebraic equation

0��∗�= 1
2

p∑
i=1

g2i �ai+�∗�−2=� (47)

have at most 2p solutions �̄∗
i � satisfying −aj+1<�̄∗

2j+1� �̄∗
2j <−aj for

j=1�			�p−1, and �̄∗
1>−a1��̄∗

2p<−ap. Since A has only id negative
eigenvalues, the equality 0��∗�=� has at most 2id+1 strictly positive roots
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Figure 1. Graph of 0��∗�.

�̄∗
i �>0, i=1�			�2id+1. By the complementarity condition �̄∗

i

(
1
2 �x̄i�2−�

)=0,
we know that the primal problem ��q� has at most 2id+1 KKT points x̄i on
the sphere 1

2 �x̄i�2=�. If aid+1>0, the equality 0��
∗�=� may have at most 2id

strictly positive roots. �

Theorem 3 presents a complete set of KKT points to the quadratic programming
over the sphere since the dual algebraic equation (47) can be solved completely
by MATHEMATICA. From Figure 1 we can see that for a given matrix A and
the parameter �>0, the canonical dual problem ��d

q � has only one solution
�̄∗>−a1, which leads to a global minimizer x̄1 of the primal problem ��q�. This
theorem will play an important role in nonconvex quadratic programming.

5. Applications

We now list a few examples to illustrate the applications of the theory presented
in this paper.

EXAMPLE 1 (One-D concave minimization). First of all, let us consider one
dimensional concave minimization problem:

minP�x�= 1
2
ax2−fx� s	t	 �x��r	 (48)

Clearly, if a<0, the global minimizer of P�x� has to be one of boundary points
x̄=±r . In this case, �= 1

2r
2. The canonical dual problem is

maxPd��∗�=−1
2
f 2/�a+�∗�−��∗� s	t	 �a+�∗�>0	 (49)

Since n=1, the dual algebraic equation 1
2f

2/�a+�∗�2−� has only two roots:
�̄∗
1>−a is a unique maximizer of Pd, and �̄∗

2<−a is a local minimizer. If
we choose f = 	4� a=−	6 and r=1	5, the global maximizer �̄∗

1=0	866667,
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Figure 2. Graphs of P�x� and Pd��∗� for one dimensional problem.

which gives the global minimizer x̄1=f/�a+�̄∗
1�=1	5. It is easy to check that

P�x̄1�=−1	275=Pd��̄∗
1�. While the local minimizer �̄

∗
2=0	3333, which gives

the local minimizer x̄2=−1	5. Since for �̄∗
2<−a, the extended Lagrangian (35)

is a so-called super-Lagrangian (cf. [11]). In this case, the double-min duality
theory leads to P�x̄2�=−0	075=Pd��̄∗

2�. It is interesting to note that for �̄
∗
3=0,

then x̄3=f/�a+�̄∗
3�=−0	666667 is a global maximizer of P�x� and we have

P�x̄3�=Pd��̄∗
3�= 	13333. The graphs of P�x� and Pd��∗� are shown in Figure 2.

EXAMPLE 2 (Two-D concave minimization within convex set). We now
consider the following quadratic programming within a convex set:

min P�x1�x2�=
1
2
�a1x

2
1+a2x

2
2�−f1x1−f2x2 (50)

s	t	
1
2
x1+x2�1� x2�0�

1
2
�x21+x22��2	 (51)

In this case, the radius of the feasible set �f =�x1�x2�∈�2 �Bx�b� 1
2�x

2
1+x22��

2� is r0=2, in which, B={{
1
2 �1

}
�0�−1�} is a 2×2 matrix, b=1�0� is a

2-vector. If both a1�a2�0� P is concave and its global minima must be located
on the boundary of �f (see Figure 3). The canonical dual problem in this case is
to find ��∗��∗�∈�2×� such that

max Pd��∗1��
∗
2��

∗�=−1
2

{(
f1− 1

2�
∗
1

)2
a1+�∗ + �f2−�∗1+�∗2�

2

a2+�∗

}
−��∗−�∗1 (52)

s	t	 �∗1�0� �∗2�0� �∗
�−mina1�a2�	 (53)
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Figure 3. Graphs of P�x1�x2� and P
d��̄∗1��̄

∗
2��

∗�.

If we let f=�	3�	3�� a1=−0	5� a2=−0	3� �= 1
2r
2
0 =2, then this dual problem

has a unique solution:

�̄∗=0	548375� �̄∗1=0	406502� �̄∗2=0	106507

in the domain �∗
�+. This leads to a global minimizer x̄1=2	0, x̄2=0. It is easy to

verify that P�x̄1�x̄2�=−1	6=Pd��̄∗1��̄
∗
2��̄

∗�.

EXAMPLE 3 (Quadratic programming over a 4-d sphere). We simply let A is
a diagonal matrix with four non zero eigenvalues: a1=−0	5� a2=−0	25�
a3=0	1� a4=0	4�. If we choose f=�	3� 	4� −	2� 	1�, and �=2, the canonical
dual algebraic equation (47) has four real roots (see Figure 4)

�∗
4=−0	455359<�∗

3=−0	339287<�∗
2=−0	219664<�∗

1=0	672415	

Since �∗
1>0 and �A+�∗

1I� is positive definite, so �
∗
1 is a global maximizer of P

d,
which leads to the global minimizer

x̄1=�A+�∗
1I�

−1f=�1	73999�0	946937�−0	258928�0	0932475�

on the boundary of the 4-D sphere �x��2, i.e. �x̄21+ x̄22+ x̄23+ x̄24�
1/2=2. This is

the reason why the primal problem is very difficult. However, the dual problem is
a concave maximization programming and the global maximizer is in the interior
of the dual feasible set �∗

�.
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Figure 4. Graphs of Pd��∗� in four dimensional problem.

6. Triality Lemma for Quadratic Programming

The triality theory was originally discovered in large deformation mechanics
(see [7]), where the total potential P�u� is a nonconvex functional in infinite
dimensional space and the variable u�x� is a vector field function. At each material
point x of the system, the Hessian matrix D2P�ū� usually has non zero index
id >0 at its critical points ū�x�. Applications of this triality theory to global
optimization problems in finite dimensional systems were presented in [13]. For
the nonconvex quadratic programming problem ��� studied in this paper, if the
total cost P�x� is a canonical function, i.e. the matrix A is invertible, the triality
theory has a particular simple format.
Recall the classical Lagrangian L� �n×�m

+→� associated with the primal
problem ���, i.e. the equation (4)

L�x���= 1
2
xTAx−fTx+�T �Bx−b�	

Since the matrix A is invertible, for any given �∈�m
+, the canonical dual function

Pd
� ��� can be defined by the canonical transformation

Pd
� ���=extx∈�nL�x���

=−1
2
�f−BT��TA−1�f−BT��−bT ��

which is well defined on �m
+. Thus, the canonical dual problem (��d

�� in short)
is to find the extrema �̄∈�m such that

��d
�� � P

d
� ��̄�=extPd

� ��� ∀��0	 (54)

It is easy to prove that the primal problem ��� is canonically dual to ��d
�� in the

sense that they have the same set of KKT points, and at each KKT point �x̄��̄�,

P�x̄�=L�x̄��̄�=Pd
� ��̄�	 (55)
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Clearly if the symmetrical matrix A is positive definite, then the quadratic
function P�x� is convex over �f , and P

d
� ��� is concave over �

m
+. In this case, the

Lagrangian L�x��� is a saddle function. However, if A is negative definite, then
P�x� is concave over �f , and P

d
� ��� is convex over �

m
+. In this case, L�x��� is a

super-Lagrangian, i.e. L is concave in each x and �1. Then by the general triality
theory developed in [11], we have

LEMMA 1 (Triality for canonical quadratic programming). Suppose that the
vector �x̄��̄� is a KKT point of the quadratic programming problem ���.
If A is positive definite, then the saddle minmax theorem in the form

min
x∈�f

max
��0

L�x���=L�x̄��̄�=max
��0

min
x∈�n

L�x��� (56)

holds.
If A is negative definite, then either the super-maximum theorem in the form

max
x∈�f

max
��0

L�x���=L�x̄��̄=max
��0

max
x∈�n

L�x��� (57)

holds, or the super-minimum theorem in the form

min
x∈�f

max
��0

L�x���=L�x̄��̄�=min
��0

max
x∈�n

L�x��� (58)

holds.
Proof. The statement (56) is the classical saddle Lagrangian minmax theorem.

We need to prove only (57) and (58). Since L is concave in each x and �, if
�x̄��̄�∈�f ×�m

+ is a KKT point, we have

max
x∈�f

L�x��̄�=L�x̄��̄�=max
�∈�m+

L�x̄���	 (59)

Since the sets �f and �m
+ are not empty, for any given x∈�f , we have

L�x��̄�=max
��0

L�x���=P�x�� (60)

and also, for any given ��0.

L�x̄���=max
x∈�n

L�x���=Pd���	 (61)

Thus, by substituting both (61) and (60) into (59), the statement (57) is proved.

1The super-Lagrangian L is concave in each x and � does not imply that L is concave in the vector �x���,
see the example given in [11], p. 82.
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Now let us consider the statement (58). If for a fixed �̄∈�m
+, the vector x̄

minimizes L�x��̄� on the primal feasible set �f , then,

L�x̄��̄�=min
x∈�f

L�x��̄�=min
x∈�f

max
��0

L�x���	 (62)

On the other hand, for a fixed x̄∈�f , the KKT point �̄ should be an extremer of
L�x̄���=Pd

� ��� over �
m
+. This means that �̄ is either a global min or global max

of the continuous dual function Pd
� . If �̄ maximizes P

d
� , then

L�x̄��̄�=max
��0

L�x̄���=max
��0

max
x∈�n

L�x���=max
x∈�f

max
��0

L�x���	

This contradicts to (62), i.e. the vector �̄ can not be a global maximizer of
L�x̄���=Pd

� ��� when the vector x̄ minimizes L�x��̄� over �f . Thus, �̄ should be
a global minimizer of L�x̄��� on �m

+. This proved that if �x̄��̄� is a KKT point
of L�x���, the super-minimax theorem in the form of (58) holds. �

The triality lemma for quadratic programming can also be proved by the
so-called bi-duality theory developed in [11]. Actually, by introducing the
indicator function

��f
�Bx�=

{
0 if Bx�b�
+� otherwise

the constrained primal problem ��� can be written as an unconstrained
programming

min
x∈�n

P�x�=��f
�Bx�+P�x� (63)

This is the so-called d.c. programming when the matrix A is negative. In this
case, the statement (57) is the so-called double-max duality theory (see [11])

max
x∈�f

P�x�=max
��0

Pd���� (64)

while the statement (58) is the well-known double-min duality theory

min
x∈�f

P�x�=min
��0

Pd��� (65)

in d.c. programming. The bi-duality theory plays an important role in convex
Hamilton systems, where the total action of the systems is a d.c. functional.
However, in nonconvex mechanics and chaotic dynamic systems, where the total
energy P is usually a nonconvex functional, the triality theory is needed to clarify
local and global extrema (see [8, 12]).

7. Concluding Remarks

We have presented a concrete application of the canonical dual transformation
and triality theory to constrained quadratic programming. Results shown that
by use of this method, the nonconvex constrained problem ���� in �n can be



CONSTRAINED NONCONVEX QUADRATIC PROGRAMMING 397

reformulated as a perfect dual problem in �m+1, while the quadratic programming
problem ��q� over a sphere in �n is equivalent to an one dimensional dual
problem ��d

q �, which can be solved completely. The KKT points and extremality
conditions of these originally difficult problems are identified by Theorem 2 and
Theorem 3, which are actually applications of the general triality theory.
The canonical dual transformation method and triality theory were originally

developed from nonconvex mechanics (see [7]). Mathematically speaking, numer-
ical discretizations of nonconvex problems in infinite dimensional space usually
lead to very complicated nonconvex optimization problems with many local min-
imizers (see [13]). Physically speaking, each local minimizer represents a local
stable equilibrium state of the system. Triality theory reveals the intrinsic pat-
tern of duality relations of these local critical points, and plays an important
role in nonconvex analysis. Detailed study and comprehensive applications of
this interesting theory, as well as the associated bi-duality and polarity theories,
were presented in the monograph [11]. Generalization and applications have been
made into global optimization problems (see [13]). A general triality algorithm
was proposed recently for solving nonconvex dynamical problems and phase
transitions in nonconvex mechanics (see [15, 17, 18]).
The present paper shows again that the canonical dual transformation and

associated triality theory may possess important computational impacts on global
optimization. The extremality conditions presented in Theorem 2 are only for
the open domains �∗<−aid and �∗>−a1. The dual KKT points could be also
located in each open domain �−ai+1� −ai�� i=1�			�id−1, which might leads to
a global minimizer of the primal problem ����. The triality theory should play
essential role in the further study on this very important problem.
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